
Bringing Order to Chaos
An attempt to impart a design on UOX3

Summary
The purpose of this document isn’t to delineate a be all and end all solution but to provoke
discussion and ideas in an attempt to bring out greater influence by others and to determine a course
of action for future work. Ideas in this document may be discarded entirely or embraced
wholeheartedly, or manipulated to suit a purpose.

It will detail some ideas and thoughts that may be useful for the future development of UOX3. This
is not an exhaustive list of ideas, nor should they be taken as gospel. Please note that just because it
is being discussed, does not mean that it will end up being used. It is purely designed for
conjecture and ideas, a way of stimulating developers and users alike, with the ability to provide
feedback and input. Not all parts will be applicable to developers, not all parts will be applicable to
users. It is just a mechanism by which people can ponder and debate the merits of systems and
potential future implementations.

Categories
Summary __ 1

Categories ___ 2

Details __ 3

Source Code Restructuring___ 3

Improved Class Hierarchy ___ 4

Object Factories __ 5

Generic Properties __ 6

Recreation of Guild Systems __ 6

Recreation of Town Systems __ 6

Player Housing ___ 6

Map Handling__ 6

Versioning___ 7

Databases ___ 7

Grouping__ 7

Game Balance__ 7

Testing__ 7

Maintenance ___ 8

Reputation __ 8

Game Rewards ___ 8

Combat Systems __ 8

Chat Systems __ 8

References ___ 8

Changelog ___ 9

Details

Source Code Restructuring
Status Concept

References

The nature of UOX3 has changed over the years, away from a single source file to many source
files. There now exist 161 different files in the project, all sitting together in a single directory.
This is not the most efficient mechanism for storage of files, even though the VC workspaces are
separated into folders. What is proposed is a mechanism for segregating these files into subfolders
based on their nature. A naïve solution is to separate CPP and H files into their own directories, but
this would still leave a large amount in each folder. While it would require a restructuring of the
headers to a small degree, this would improve maintenance to some degree. What a valid structure
would be, I don’t know, though it could be split into major subsystems. Something like this may be
appropriate:

Folder Subfolder Description
source Main source folder
 combat Combat related routines here
 objects Major object classes here. Cchar, Citem, CmultiObj immediately come to

mind
 network Network related – packet classes, networking subsystems
 dfns Parsing and loading of dfn systems. Script, ScriptSection,

cServerDefinitions would be here
 script JS engine files would go here
 magic Magic related files here
 command Command related files would go here
 Races Race related files would go here
 Region Region related files would go here. This includes both town regions and

map regions
 Fileio File related files here. This includes all routines to read/write from files,

including the MULs
 Guild Guild files would go here
 Misc All other files would end up here
 Account Account related files would end up here

One thing that has not been mentioned so far is the use of third party libraries. There is the idea of
reinventing the wheel with a lot of the work that is done in UOX, including parsing of strings,
directory traversal and other means. Some of these things could be offloaded into well-tested third
party libraries, which would also remove some of the platform specific issues that we seem to
stumble over. One such library that could prove useful is the Boost library (http://www.boost.org).
It involves a series of libraries, upwards of 50, which are well tested and portable. Amongst other
things, we could use it to simplify our tokenisation of strings, date time systems, directory traversal
systems and provide safer versions of functions such as sprintf.

The biggest issue with using third party libraries is the fact that it makes life more complex when it
comes to compilation and development. There is also the issue of licensing but given the GPL
nature of UOX3, few licenses should prove to be a problem.

http://www.boost.org/

Improved Class Hierarchy
Status Concept

References

The current class hierarchy is a haphazard collection, with some routines thrown into a class purely
for the sake of them being there. There is also plenty of freedom left for improving the class
hierarchy, where it only travels at most 3 deep in packet classes, and 2 deep otherwise. The
hierarchy could be heavily improved though it would require a large investment in time and
debugging. Most notably, the character class could be subclassed into an NPC and PC class, and
the multi class could be subclassed further for housing, providing specific features. However, some
of these could also be manipulated with the idea of Generic Properties mentioned further along.

The biggest link of this would be to the object factories and ease of maintenance. A large part of
the SERIAL spectrum is completely unused, with characters and items only taking up a small part
of that. We could reserve other parts of the spectrum for other classes of objects such as regions,
towns, sockets and so forth, but this would rely on an uber base class that provides a serial and an
objType for each.

A possible, non-exhaustive hierarchy could be something along the lines of

Uber base
 CBaseObject
 Citem
 Cmulti
 Chouse
 Cchar
 CPC
 CNPC
 CSocket
 CRegion
 CPBuffer
 Outgoing packets
 CPInputBuffer
 Incoming packets
 Cguild

Object Factories
Status Concept

References

This ties heavily into the previous section, detailing an improved class hierarchy. As it stands, we
have separate routines and handlers for creation of objects. By use of an object factory, we can
centralise the routines required for creation of objects. For instance, the cItems class is responsible
for creation of items and multis while cCharacterStuff is responsible for creation of characters. By
creating a single routine, we can make one place responsible for the creation and destruction of all
our in game objects. In this instance, it would be a single routine, which is passed an enum
detailing the object type we wish to create and returning a pointer of the appropriate type. Another
routine would exist that would be responsible for the destruction of objects.

As an aside, we would also put the lookup routines for objects in this space as well. Because of
this, the object factory would be responsible for the creation, deletion and lookup of our object
types. This relies heavily on the idea of a refactored class hierarchy, if the object factory is to be
responsible for the creation of objects like sockets and regions as well.

Because of this, we’re also likely to remove the items[] and chars[] array from a global scope,
making the object factory the recipient of these containers. This allows us to hide away the way the
pointers are allocated,

Generic Properties
Status Concept

References [10]

Recreation of Guild Systems
Status Concept

References [1]

Recreation of Town Systems
Status Concept

References [5]

Player Housing
Status Concept

References [2]

Map Handling
Status Concept

References

Versioning
Status Concept

References

Versioning in UOX3 is rather ad hoc, advancing in a fashion that depends entirely on the coder. To
my knowledge, there is no set heuristic or algorithm for the incrementing of a version number. As
it currently stands, UOX3 is at version 0.97.06 Build 1m. There are 4, arguably 5, parts to that
version number. The 0 meaning the major version number, the 97 indicating major subversion, the
06 indicating the minor version and then 1, possibly 2 parts: major build and minor build.

Assuming we see it as 5 parts, then there’s a lot of possibilities for increment. But there are no hard
and fast rules for incrementing this, except to say that version 1.0 will be the developer’s ideal
version, and as the code gets closer, so does the version number. A possible list of rules for
incrementing may prove useful to help clarify the versioning system. One possible heuristic (and
remember, it’s only a suggestion) is:

Version Part Rule

Major Revolutionary leap in behaviour, practice or functionality
Major Subversion Significant updates to major subsystems
Minor Subversion Major updates to single subsystem, or collection of relatively updates to

group of subsystems
Major Build For every commit that’s worth going into the cvs. Any bug fix would do it.

Upon completion of a bug fix, the minor build is reset to 0 (or a) and this is
incremented.

Minor Build Every single build attempt increments this. This number may increase more
than once between commits. So if fixing a bug takes 4 compiles and tests,
then this would go up by 4.

Databases
Status Concept

References

Grouping
Status Concept

References

Game Balance
Status Concept

References [7], [8], [9]

Testing
Status Concept

References [6]

Maintenance
Status Concept

References

Reputation
Status Concept

References [4]

Game Rewards
Status Concept

References [3]

Combat Systems
Status Concept

References [7], [8], [9]

Chat Systems
Status Concept

References [1]

References
[1] Olsen, J. (2003). Designing a Flexible Guild Creation and Management Command Set.
Massively Multiplayer Game Development. pp. 442 – 453

[2] Sage, P. (2003). Player Housing – My House Is Your House. Massively Multiplayer Game
Development. pp. 421-426

[3] Pizer, P. (2003). Social Game Systems: Cultivating Player Socialization and Providing Alternate
Routes to Game Rewards. Massively Multiplayer Game Development. pp. 427 - 441

[4] Brockington, M. (2003). Building a Reputation System: Hatred, Forgiveness and Surrender in
Neverwinter Nights. Massively Multiplayer Game Development. pp. 454 - 463

[5] Rogers, A. (2003). City-State Governments – Their Roles in Online Communities. Massively
Multiplayer Game Development. pp. 464 – 476

[6] Walker, M. (2003). Unit Testing for Massively Multiplayer Games. Massively Multiplayer
Game Development. pp. 137 - 150

[7] Sanderson, D. (2003). Everybody Needs Somebody: Practical Advice for Encouraging
Cooperative Play in Online Virtual Worlds. Massively Multiplayer Game Development. pp. 20 - 29

[8] Hanson, B. (2003). Game Balance for Massively Multiplayer Games. Massively Multiplayer
Game Development. pp. 30 - 37

[9] Olsen, J. (2003). Game Balance and AI Using Payoff Matrices. Massively Multiplayer Game
Development. pp. 38 - 48

[10] Cafrelli, C. (2001). A Property Class for Generic C++ Member Access. Game Programming
Gems 2. pp. 46 - 50

Contributors
Maarc darkangelab@users.sourceforge.net

Changelog
Version Date Change Editor

1.0 13 Aug. 03 Initial Revision Maarc

	Summary
	Categories
	Details
	Source Code Restructuring
	Improved Class Hierarchy
	Object Factories
	Generic Properties
	Recreation of Guild Systems
	Recreation of Town Systems
	Player Housing
	Map Handling
	Versioning
	Databases
	Grouping
	Game Balance
	Testing
	Maintenance
	Reputation
	Game Rewards
	Combat Systems
	Chat Systems

	References
	Contributors
	Changelog

